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I 
The Moving Least Squares (MLS) grid-free method, a simple, flexible finite difference 
method for solution of general continuum mechanics problems, especially detonation 
problems, is proposed in this paper. The spatial points that carry time dependent data 
are distributed in space in such a way that provides nearly uniform spacing of points, 
accurate presentation of boundaries, easy variation of resolution and arbitrary 
reorganization of the computational domain. Local finite difference operators are 
obtained with simp le MLS differentiation. There is no specific topological or 
geometrical restriction of the distribution of data points. Therefore this method avoids 
many drawbacks of the traditional methods. Because of its flexibility, it can be used to 
simulate a wide range of mechanics problems. Because of its simplicity, it has the 
potential to become a preferred method. 

Most traditional computational continuum mechanics (CCM) methods, from a Smooth 
Particle Hydrodynamics (SPH) view, can be considered as special cases of grid-free 
methods of specific kernel functions. Such a generalization allows the development of 
a unified grid-free method that can represent most finite difference methods by 
switching the kernel functions. The flexible management and ease of coding make 
such a unified code attractive for many applications. 

A simple three-dimensional narrow-band level-set algorithm, which is associated with 
the MLS grid free data point distribution in three dimensions, is also proposed. 

INTRODUCTION 

In this paper, we propose a methodology that we 
call the Moving-Least-Squared (MLS) grid-free 
method. It is an extension of the MLSPH method 
by Gary Dilts"'. [21. This method is appropriate for 
the calculation of general, complex physical 
processes such as detonation and shock 
propagation. We abandon the concept of a finite 
element and grid. Instead, the spatial points that 
carry computational data are arbitrarily distributed 
in space. We derive a set of finite difference 

schemes with simp le MLS differentiation . The 
accuracy of these difference equations is 
comparable to traditional methods. The boundaries 
can be represented with data points and the 
treatment of interfaces between different objects is 
easily implemented. 

There are two essential phases associated with the 
MLS grid-free method. A data point distributor, 
and a set of MLS algorithms. The data point 
distributor arranges the data point set in such a 
way that the data points are regularly spaced; 



boundaries are simply represented with data 
points. MLS differentiation is used to derive local 
spatial finite difference operators. MLS 
interpolation is used for rearrangement of points 
when needed. The data points can be fixed in space 
(the Eulerian mode) or moving with the material (the 
Lagrange mode) and it is easy to switch from one 
mode to the other. Large deformations can be 
easily traced with the Lagrange mode without 
regard to topological constraints. If variable 
resolution or arbitrary deletion of domains is 
desired, the MLS grid free methodology requires 
no additional effort. 

In a global view, the MLS grid free methodology is 
a simple, unified frame that consists of a class of 
computational continuum mechanics (CCM) 
methods. Many existing CCM methods can be 
considered as subsets with restrictions of this 
general, flexible method. The MLS grid-free 
methodology provides simple derivation of the 
equations of motion, explicit local error estimation, 
precise boundary representation with data points, 
and easy implementation of boundary conditions. 
Despite some moderate numerical complexities that 
are associated with the point distributor, it is a very 
simple method to implement and to manage. 

MLS DIFFERENTIATION 

The Moving-Least-Squared method (MLS) has a 
close relationship with the local finite difference of 
spatial derivatives. To be specific, the finite 
difference analog of spatial derivatives based on 
the linear combination of point data, especially grid 
data, is equivalent to special cases of direct 
differentiation of MLS functions. By varying the 
weight function (the kernel), one may obtain 
various expressions of local spatial derivatives. 

This point is very easy to show, since the MLS 
function interpolates any specified set of functions 
exactly, one may choose the function set to be { I, 
x, x2 ... x“}. An analytical function at xi can be 
expressed as its Taylor series 

f ( x , >  = 2- f ” ’ ( X )  (x, - x)’ + U(x  - x ,  ) “ + I .  
,=,, i! 

The interpolation of f(x) using the MLS functions 
is defined as 

f * G >  = c fG,)@,(?, - 2 ) .  
J 

With the substitution of f(xJ into the MLS 
interpolation, it is clear that except for the very first 
term, all power terms will vanish till the order of n. 
Therefore f ( x )  is the value of f(x), plus a 
remainder of O[(dr)””/(n+l).!I, where Ax is the 
size of the neighborhood. By taking the kfh 
derivatives of f (x ) ,  one immediately realizes that 

@ ‘ k  (’ - ’ J is the coefficient in front of 
the function value ,f(xJ in a finite difference form of 
the k”’ derivative o f f  at x. Similar analysis for multi- 
dimensional cases can also be easily shown. 
Mathematically speaking, any specified order of 
local derivatives of an analytical function can be 
obtained by MLS dijferentiation to any specified 
accuracy if enough neighbor points are involved. 

DATA POINT DISTRIBUTOR 

The flexibility of the MLS grid-free method avoids 
certain constraints associated with the traditional 
CCM methods. We are allowed to arrange the data 
points in such a way that facilitates the calculation. 
The particle spacing is controlled in a way to: 

(1). reduce the local truncation error, 
(2). accurately represent the boundaries, 
(3). allow easy variation of resolutions, and 
(4). freely exclude unnecessary domains. 

We implemented an intrinsic Huygens construction 
technique to identify the level sets of the signed 
minimum distance functions. The data points are 
placed evenly on the level curves. The distance 
between neighbor level curves is nearly uniform 
and equal to the particle spacing. The boundary of 
a region that requires special resolution can be 
treated as a level set in which the particle spacing 
is equal to the required resolution. After all of the 
level curves are filled with data points, one can 
delete unusable points arbitrarily. 

PARTICLE AND VORONOI CELL 

We assume that each interior data point is 
associated with a definite volume - the volume of 
its Voronoi cell ‘I9]  The sum of these volumes 
represents the physical volume occupied by the 
material. For a single data point, the mass, 
momentum and energy it carries can be defined as 
well as its volume. Thus it is sensible to call these 



data points ‘particles’. This definition is 
geometrical compared to the numerical definition of 
particles in SPH. Because the boundary normal 
vector of a Voronoi cell is trivially identified, it is 
easy to compute physical fluxes that enter or leave 
a particle when required. 

PHANTOM PARTICLES 

The real material objects are bounded by phantom 
particles. These particles help to accurately 
represent the boundaries. They make each real data 
point an interior one. In addition, they carry 
environmental properties (or other specified 
properties) so the treatment of the boundary 
condition can be naturally integrated into the 
solution of the governing equations. Furthermore 
they improve the stability of the method. Last but 
not the least, phantom particles help to avoid 
extrapolation and to maintain accuracy when the 
solution is evaluated at a boundary. 

NElGHBOR SEARCH 

The particle system is contained within a search 
matrix (a regular mesh). Its mesh size is comparable 
to the search-length. For a particular particle A ,  the 
neighbor search only involves the particles that 
occupy cells directly connected to the cell in which 
particle A resides. The effort of such a search 
method is evidently linear. 

BOUNDARY PARTICLES 

A very simple method to detect particles on the 
boundary is implemented. The basic idea is that a 
boundary particle is an ‘open’ one. Let the particle 
of concern be defined as the origin. Then all the 
neighbors can be projected onto a unit circle. The 
maximum of the minimumspan of angles formed by 
two neighbors must be greater than some critical 
value (d3 seems to work fine) for boundary 
particles. To further ensure the method is well 
defined, the neighbor set used to determine angular 
spans also includes the neighbors of neighbors of 
the particle of concern. Our experience indicates 
that this simple boundary detection method is quite 
reliable. 

In three-dimensional cases, one may observe the 
maximum of the minimum span of solid angles in 
neighbors to determine the boundary particles. 

REPRESENTATION OF OBJECTS 

A boundary is represented with boundary 
particles. We first detect the particles at the 
boundary, and then carefully link them to form 
curves. Consistency between the numbering of 
boundary particles and the arc-length is essential. 
The boundary curves are considered to be level-set 
curves of signed minimum distance of function 
value zero. Interior particles are positioned in a 
similar fashion on level curves of negative function 
values. 

ORDER BOUNDARY PARTICLES 

Starting from an arbitrarily selected boundary 
particle, one needs to find an effective algorithm to 
determine the next boundary particle, till the 
starting particle is again found. The basic approach 
we used is to find the interior particle nearest to a 
known boundary particle, then apply the right hand 
rule to determine the next boundary particle to be 
linked. Of course we first consider all the 
neighbors. When the boundaries have sharp turns, 
multiple candidates may be found. We take the 
right most one to fulfill the right hand rule. 

A check to eliminate misidentifications is to 
examine the original particle number on boundaries. 
If the natural numbering of boundary particles is 
violated, we use the original order. 

In the three-dimensional case, the level of 
neighbors, which will be explained later, determines 
the order of boundary particles. 

TREATMENT OF BOUNDARlES 

Currently we treat an interface particle as an interior 
particle, if this particle is under compression or is 
moving toward the interface. An interface particle 
is treated as a free boundary particle if it is in 
tension and is moving away from the interface. 
This simple treatment provides acceptable results. 

In the treatment of free boundary particles, we use 
phantom particles to carry environmental pressure. 
We also interpolate the environmental pressure 
with the distance from the center of interior 
particles to the boundary as if the pressure is 
applied right at the boundary[”]. This helps to keep 
the boundary smooth. 



A MONOTONIC ESTIMATOR OF THE SECOND 
ORDER 

The natural neighbors of a given point A form a 
convex polygon P, with A as an interior point of P. 
From the theory of linear programming, A's 
coordinates can be expressed as a linear 
combination of the coordinators of the corners of 
P,  or A's natural neighbors in the format 

F~ = x A I F , ,  a l s o z A , = l ,  and i l l  > O .  
I I 

Here j is the index of the neighbors. For an 
analytical function, its value at A can be 
interpolated with exactly the same coefficients 
using the neighbor values with an error that is at 
most second order. This is easy to confirm by 
performing a Taylor's expansion at A .  
Monotonicity is achieved with positiveness of the 
coefficients. 

In general, the neighbors found are not necessarily 
the set of natural neighbors. Thus there is no 
convexity available. However, one may project the 
neighbors onto the surface of a unit sphere 
centered at A and apply geometric similarity to 
obtain a similar second order monotonic estimator. 

TRADITIONAL METHODS 

Traditional finite difference methods with a grid are 
degenerate cases of the MLS grid free 
methodology. For example, with a uniform grid in 
two-dimension, let point A ,  to be located at (O,O), 
its natural neighbors will be located at {A2,  A J ,  A4,  
A , )  = ((0, I ) ,  (1, 0), (0, -11, (-1, 0)). By taking a 
constant weight function, one finds the MLS 
functions 

One sees they interpolate { I ,  x, y,  x2, y ]  exactly. 
To interpolate the function AXJ) using MLS 
functions. one has 

j=l 

By taking the Laplacian of the function f*(x, y), one 
finds 

MLS GRID FREE METHOD 

The MLS grid free method can be outlined as 
follows. The set of points that carry data does not 
have to obey any local topological constraint. A 
set of phantom points can be added to this point 
set. One first searches for the neighbors of each 
point. Then one rewrites the equations by 
evaluating the derivatives with MLS differentiation. 
The time derivative at a point can be estimated from 
its neighbors with a second order monotonic 
estimator for monotonicity. The time integration 
may be done with a numerical integrator or a 
Runge-Kutta like method. 

The boundaries can be represented with boundary 
particles. Phantom particles ensure every data 
point is an interior point, and provide boundary 
conditions. Local particle spacing is kept nearly 
uniform with a simple intrinsic level-set method to 
arrange particles on level-set curves/surfaces. 
Rezoning may be done to maintain particle spacing 
as needed. For rezone to be effective, it is essential 
to correctly identify boundary particles and to 
connect them in the proper order. 

It is exactly the difference Laplacian operator on a 
uniform grid. One may also obtain the first 
derivatives by MLS differentiation only once. At 
(O,O),  we obtain the central difference format. 

A UNIFIED METHOD 

We indicate that most kind of CCM methods can 
be expressed as SPH['21-1'61 methods with specific 
kernels. Thus, desired CCM methods may be 
implemented with a unified grid-free code by simply 
changing kernels and data point distributions. The 
resulting unified code can be easily managed and 
the programming work is eased. Furthermore the 
transformation between different CCM systems can 
be easily done with the MLS rezoning method. 

REZONING AND CONSERVATION 

Rezoning is performed mainly to maintain particle 
spacing, so as to improve stability and to maintain 
the accuracy of the spatial derivatives. Larger time 
steps can be used after rezoning because the 
particle spacing is regular. Nonphysical material 



intrusion can also be prevented if the rezoning is 
done before the intrusion occurs. When large 
particles and small particles meet, it is difficult to 
keep symmetry in the neighbor search (i.e., if a is 
b's neighbor, then b is a's neighbor too) with 
particle diameters as the search length. To prevent 
loss of accuracy through loss of symmetry, a 
rezone is appropriate. The MLS interpolation 
during rezoning conserves mass, volume, 
momentum and energy of the system with at least 
second order local accuracy [*'I. 

Basically we add up partial fractions so the 
conservation laws are satisfied automatically. The 
volume of particles and the overlap of a new 
particle and old particles are defined as: 

where qj is the irh MLS interpolant of the new 
particle atxi and 9 is 
the old particle xi. pii  can be considered as the 
portion of new particle i that overlaps with the 
old particle j .  

MLS interpolant at 

The first observation isZ,pij = I ,  so the 
definition is consistent with the meaning of 
partial fraction. It will be used to calculate the 
properties of the new particles i by summation 
over partial distributions from all old particlesj in 
order to ensure that conservation is satisfied. 

We calculate the particle properties in the 
following way 

I 

Symbolically, the mass, momentum and energy 
are conserved exactly, for example 

however by definition 

old 

which i s  exactly because the MLS 

' i ) exactly 
'p ;ex' ( 2 - 

interpolant 
interpolates the number I .  Therefore 

xi mnew =xi  moil' I '  

The mass is conserved exactly. Similarly one can 
prove the momentum and the energy are also 
conserved exactly. 

The only problem left is how to calculatep,. We 
make the choice similarly to what was done in [I] ,  
that is, using a single quadrature to evaluate the 
integrals centered at particle i, we find that 

This allows us to interpolate any linear function 
exactly. Since every particle has local support, we 
conclude that the error is at most of second order. 
Thus the dissipation is well controlled. 

LINEAR VORONOI ALGORITHM 

We calculate the Voronoi cells of a particle from its 
neighbors. By definition, the effort of this method 
is of O(n) for an n-particle system. Compared to 
other optimized Voronoi solvers, this method is the 
fastest when n is large, provided that the neighbor 
search has been done in advance. However, the 
cost of the neighbor search method we use is also 
of the order O(n). 

We describe this method with the construction of a 
three-dimensional Voronoi cell. We assume a given 
interior particle A has M neighbors and all A's 
natural neighbors are included. The first step is to 
find the closest neighbor of A, to define the first 
facet. Next, one finds the smallest distance from the 
origin to all possible edges on this facet; the first 
edge is then determined. The third step is to find 
the smallest distance from A to all of the possible 
vertexes on the first edge, so to determine the first 
vertex on this facet. The neighbor responsible for 
this vertex also defines the next edge. To determine 
the next vertex, one finds the smallest distance from 



all of the possible vertexes on this edge to the last 
vertex. Convexity is checked by excluding all the 
vertexes that are located on the opposite side of 
the facet defined by the last neighbor point that 
corresponds to the last edge. One repeats this 
procedure until the first vertex is found again. By 
now the first facet is completely determined. We 
have also identified the particles corresponding to 
the next level of facets (and their first edge, and the 
first and last vertices) at this point. A single quick- 
sort routine '201 is used to perform the sorting, and 
the cost is of the order O(1nM). A do-loop of the 
algorithm described above is applied to all the 
newly found facets until no new facet is found. The 
connectivity ensures that no facet is left. The entire 
connecting list is thus obtained naturally and the 
method is optimized. 

FJGURE 1. A THREEDIMENSIONAL VORONOI 
CELL. 

A three-dimensional Voronoi cell that is obtained 
with this approach is shown in figure 1.  The two- 
dimensional Voronoi algorithm has a similar but 
much simpler implementation. 

INTRINSIC LEVEL-SET METHOD 

The particles are positioned on level curves of 
signed minimum distance to the boundary of an 
object. The distance between adjacent level curves 
is equal to the desired local particle size. A 
Huygens construction is used to define these level 
curves. The basic idea is to calculate the distance 
from mesh points to the boundary, then to 
determine the curves of specific level-set values. 
To minimize the cost of calculation, the values of 
the signed minimum distance function are 
calculated only for those mesh points close to a 

known level curve, to determine the next level 
curve. The loop starts from the zeroth level-set, the 
boundary. Exact positioning of curves is not 
important except for the boundary. The distance 
between level curves can be gradually increased to 
reduce the number of points. After all particles 
have been positioned, by calculation of Voronoi 
cells, the volume and mass center of each interior 
particle is then exactly determined. The change of 
connectivity is automatically done with the level- 
set method. 

The two dimensional level-set method['81. [2'1 

described above is a special case of a simple three 
dimensional intrinsic level set algorithm. The key 
component of this method is a simple looping 
method that we call "level ofneighbors". 

LEVEL OF NEIGHBORS ON SURFACES 

Three-dimensional surfaces can be represented 
with boundary points (or equivalently, facets). We 
use a simple looping algorithm to arrange the 
boundary points. The loop is done for the 'level of 
neighbors'. A given particle is its level zero 
neighbor. Its immediate neighbors are its first level 
of neighbors. The neighbors of the nth level are the 
immediate neighbors of the (n - Ifh level of 
neighbors. Particles do not change their level once 
it has been determined. A particle only connects to 
its immediate neighbors on the surface. The 
connection list then is naturally obtained, as the 
neighbors of any specific point are determined in 
the loop. No points/facets will be left uncounted. 

A SIMPLE NARROW-BAND LEVEL-SET 
ALGORITHM IN THREE DIMENSIONS 

With a simple looping method (level of neighbors), 
a three dimensional intrinsic level-set algorithm can 
be implemented trivially regardless of shape and 
connectivity. This algorithm works for both particle 
systems and element systems. The idea is that a 
three dimensional surface can be considered as a 
collection of slices contained in elements. Once we 
have a method to loop over those slicesifacets, the 
problem is basically solved. A regular mesh can be 
seen as a system of &node elements. A particle 
system, after triangulation, can be seen as a system 
of Cnode elements. This algorithm has been 
implemented for arbitrary &node element systems. 
We describe this algorithm for a general element- 
system so as to provide a unified method. 



We start with only one facet F on the surface, 
which is contained in element E (such a facet can 
be determined by interpolation of nodal values). 
This facet has several sides, each side lies on a wall 
that is shared by E and another element. We 
assume that a list of elements that share walls with 
E is provided. Then it is easy to determine a list of 
elements that contain facets and are connected to 
F .  Thus we have found the first level of neighbors. 
Then we loop over the current level of neighbors, 
with the same logic, to determine the facets they 
contain and to find the next level of neighbors. We 
repeat this procedure until no new level of 
neighbors can be found. 

After this loop has identified all the facets, we 
directly measure the distance from nearby nodes 
(narrow band) to the surface. We again use the 
idea of level of neighbors to keep this task 
localized. After this task is completed, we have 
obtained the signed minimum distance for all nodes 
in the narrow band. 

The last step is to advance the surface according 
to physical laws by solving the level-set equation. 
Then one goes back to determine the surface at the 
new time step, until all the region of consideration 
have been reached by the moving surface. 

This algorithm has second order accuracy if the 
facets are treated as planar. However the 
calculation of curvature requires third order 
accuracy. This can be addressed by fitting the 
neighboring facets with a second order polynomial 
(of only two variables) locally. Also, small 
curvature should be assumed so the surface does 
not turn sharply within a cell. 

The boundary treatment is trivial for the case of 
detonation propagation. Since the slope between a 
boundary facet and the boundary is specified, the 
facet is uniquely determined. 

The major advantage of this method is not only its 
simplicity and low cost, but rather, for a problem 
with arbitrarily specified boundaries, a usual level- 
set method requires all the nodes to be initialized 
with signed minimum distances for the solution to 
start and it is logically contradictory because 
initialization of such a problem is almost equivalent 
to solving the problem. However, with this intrinsic 
level set method, only the narrow band nodes need 
to be initialized, thus the complexity of the 

boundary geometry is not relevant. Furthermore, 
because the element system is arbitrary, one may 
always choose body fit meshes so to have 
boundary represented by nodes. This makes the 
boundary treatment much easier, compared to the 
case of regular mesh. The boundary treatment is 
trivial for the case of detonation propagation. Since 
the slope between a boundary facet and the 
boundary is specified, the facet is uniquely 
determined. 

This algorithm provides both an iso-surface 
identification (front tracking) method and an 
intrinsic Huygens construction method. One of its 
many possible applications is the construction of a 
three-dimensional rezone method for completion of 
the MLS gird free methodology. A method to 
determine level set curves on a three-dimensional 
surface is only a degenerated case of this 
algorithm. We put points evenly on the level set 
curves, similar to what we have done for the two- 
dimensional method. 

This algorithm can also be used to construct a 
marked particle method to propagate three- 
dimensional surfaces according to intrinsic 
geometric laws, because the local geometric 
features of the surface are well defined with 
neighbors. 

TREATMENT OF FRACTURES 

In the two-dimensional case, with the specific 
method we used to position particles, it is a simple 
task to detect and deal with fractures. The idea is 
based on the consistency between the numbering 
of boundary particles and continuity of the arc- 
length. When fracture occurs, the continuity of arc- 
length is broken. Interior particles become 
boundary particles and the original numbering of 
boundary particles with the order of natural 
numbers is lost. It is very easy to determine where 
the fracture occurred. In the case of a material 
fracturing into two pieces, the natural numbering of 
the particles on the original boundary becomes 
naturally numbered on two separate closed curves. 
The fractured region is where the disconnection of 
natural numbering of boundary particles occurs. 
This helps to accurately determine the newly 
formed pieces. The reliability of this method is 
evident by nature. 

In three dimensions, one may observe the change 
of the level of neighbors to determine fractures. 



BURN MODELS 

Various bum models can be easily implemented 
with the MLS grid-free method. Currently our code 
includes the following burn models 

1). Programmed Burn: With given bcations and 
ignition time of the ignition points and the normal 
detonation velocity (CJ velocity, say), it is easy to 
calculate the detonation arrival time at each 
explosive particle confined in a convex region by 
calculating the distance from a particle to the 
closest initiating point. When the region of the 
explosive is not convex,. the bum time can be 
determined with level-set curves. 

2). Neighbor Burn: It is assumed that only burning 
neighbors can ignite an explosive particle. When a 
particle has not been ignited but one or more 
neighbor particles has started to burn, the bum 
time of this particle then can be calculated by the 
distance of this particle to its burning neighbors, 
divided by the local detonation velocity. To be 
exact, the burn time of the particles closest to the 
spark is determined with their distance to the spark. 
After that, in most cases, at every time step there 
shall be more than two burning neighbors of an 
unburned particle, the bum time of this particle is 
determined with the turn times of two burning 
particles with a geometric method. If there is only 
one burning neighbor, the burn time is determined 
directly by the distance between the two particles. 
The burning time is dynamically determined. If the 
local material properties are not uniform, a variable 
detonation progression rate can be calculated. 
When there are inert particles embedded in the 
material, the distribution of inert particles affects 
the bum times. The reactive particles that are 
enclosed by inert particles will not bum. The 
neighbor burn model is appropriate in this case and 
the programmed burn will not work. 

3). Greek-Fire Model: This model is used to deal 
with the ignition of crushable explosive materials. It 
is assumed that the explosive material gets crushed 
in dynamical processes when the elastic 
deformation exceeds certain limits. The release of 
the stored elastic energy after crushing gasifies a 
small amount of explosive and the gasified material 
starts to react according to an Arrhenius law. This 
reaction, coupled with other physical processes, 
may cause local pressure to increase and accelerate 
the reaction. When the gasified explosive is burnt, 
a pressure dependent law consistent with 

experimental data determines the local reaction rate 
of the solid. Ignition may occur if the local pressure 
is high enough, otherwise it may die and the 
detonation process ends. 

Other bum models can also be easily implemented. 
For example, since the differential operator can be 
easily represented with the MLS algorithm it is a 
relatively easy task to solve the level-set equation 
for the propagation of detonation shock surface 
given the law of surface propagation (from DSD 
theory UL [2419 say) to better determine the bum 
time. As we have described in the section of three 
dimensional narrow band level-set algorithm. 

AN EXAMPLE OF DETONATION SlMULATlON 

The Viper-Jet: Figure 2 shows a snap shot of a 
shaped charge calculation at 30.5 p e c .  About 
40,000 data points were used with a programmed 
burn model. The velocity at the tip of the viper is 
only 0.3% off the experimental value. 

FIGURE 2. A SNAP SHOT OF THE 
SHAPED-CHARGE CALCULATION. 

Figure 3 shows its agreement with the 
experimental mass-velocity distribution (the 
squares). The unit of mass (the x-axis) is (gram), 
and the unit of velocity is (krn/s). The 
calculation time is about 7 hours on a 0.7 GHZ 
Linux station. Much time is taken by the 
calculation of Voronoi cells in the rezone process. 
The Voronoi algorithm can be omitted by 
rewriting the governing equations to avoid explicit 
appearance of volume (and mass) of particles. A 
better rezone criterion may also be considered to 
reduce the frequency of rezoning. 



method in the following: 

FIGURE 3. THE MASS DISTRIBUTION. 

CONCLUSIONS 

The MLS grid-free method, as described, can be 
viewed as a general, arbitrary, free Lagrange/Euler 
method by nature. Its variations correspond to 
various CCM methods. Traditional CCM methods 
such as Eulerian methods on a regular grid, free 
Lagrange methods, FEM, SPH, and ALE can all be 
considered as specific cases of one unified grid- 
free method. Thus it is possible to develop a 
unified grid-free code that contains many CCM 
methods by including various kernel functions. 
Most importantly, the coding effort is minimal. 

The data point distributor is designed under the 
geometrical requirements that data points are 
uniformly spaced and material boundaries are 
represented by data points. Local variable 
resolution can be accommodated with ease. 

Particle redistribution reduces the truncation error, 
minimizes the number of data points, and clearly 
identifies material boundaries. 

The boundary treatment in the MLS grid- free 
method is natural with the employment of phantom 
particles that serve as environmental particles or as 
image data points. They also improve the accuracy 
and stability of the method. 
We list some of the benefits of the MLS grid-free 

a). trivial deletion of domains, 
b). trivial implementation of variable 

resolution, 
c). clear definition of boundaries. 
d). no diffusion or intrusion between 

material boundaries. 
e). generalization of traditional CCM 

methods. 

The MLS grid free implementation in three- 
dimensions should be only a straightforward 
extension of its two-dimensional case with the 
presence of a three-dimensional data point 
distributor. We have described in this paper 
practical methods for the construction of a three- 
dimensional particle distributor/rezoner. Most of 
these methods have been implemented. 

The MLS grid-free methodology has been 
successful so far in dealing with various problems 
in mechanics, especially for detonation problems. It 
is expected most problems can be solved with this 
approach because of its flexibility and simplicity. It 
has the potential to become a general, very 
powerful method in computational continuum 
dynamics. 
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